If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6z^2+5z=0
a = -6; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-6)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-6}=\frac{-10}{-12} =5/6 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-6}=\frac{0}{-12} =0 $
| (10x-9)=(6x+7) | | 6x-9+4x-3+4x+10=180 | | 2(x+2)=-x-17-2x | | -43-5x=26-8x | | -3|3x-1|-4=-10 | | 11x+4=4x+24 | | 4-x+56-2x=74 | | t^2-12t=-17 | | 84/20=21/x | | 6.50+2t=22.50 | | 2x+1=x+13=3 | | 3p+1-2p=2+8 | | 3(x+4)=x−8 | | 180=11x-2+6x+7+90 | | 6x-9+4x-3=4x+10 | | 3p+4+5p=180 | | 4x+4.20=25 | | 4.9+10m=8.67 | | 2x-(6x-8)=4(3+5x) | | 2+x/6=-1/6 | | 3p+4=5p | | 3x-4+3x-17+69=180 | | 10(x+6)=350 | | D=7-0.5t | | 210=35-x | | 3(-2+t)=14-4(t-2) | | 19j+4j-17j+3j=45 | | 24+22x-3=27x+1 | | 10(x+6)=3(0 | | 27-x=575 | | 3(x+2)=3-6 | | 7x+8+33+90=180 |